1. A continuous uniform distribution on the interval $[0, k]$ has mean $\frac{k}{2}$ and variance $\frac{k^{2}}{12}$. A random sample of three independent variables X_{1}, X_{2} and X_{3} is taken from this distribution.
(a) Show that $\frac{2}{3} X_{1}+\frac{1}{2} X_{2}+\frac{5}{6} X_{3}$ is an unbiased estimator for k.

An unbiased estimator for k is given by $\hat{k}=a X_{1}+b X_{2}$ where a and b are constants.
(b) Show that $\operatorname{Var}(\hat{k})=\left(a^{2}-2 a+2\right) \frac{k^{2}}{6}$
(c) Hence determine the value of a and the value of b for which \hat{k} has minimum variance, and calculate this minimum variance.

1. (a) $\mathrm{E}\left(\frac{2}{3} X_{1}+\frac{1}{2} X_{2}+\frac{5}{6} X_{3}\right)=\frac{2}{3} \times \frac{k}{2}+\frac{1}{2} \times \frac{k}{2}+\frac{5}{6} \times \frac{k}{2}=k$

M1 A1
$\mathrm{E}\left(X_{1}+X_{2}+X_{3}\right)=\mathrm{k} \Rightarrow$ unbiased
(b) $\mathrm{E}\left(a X_{1}+b X_{2}\right)=a \frac{k}{2}+b \frac{k}{2}=k$
$a+b=2$
$\operatorname{Var}\left(a X_{1}+b X_{2}\right)=a^{2} \frac{k^{2}}{12}+b^{2} \frac{k^{2}}{12}$
$=\left(2 a^{2}-4 a+4\right) \frac{k^{2}}{12}$
$=\left(2 a^{2}-2 a+4\right) \frac{k^{2}}{6}$
(*) since answer given
A1 cso
6
(c) Min value when $(2 a-2) \frac{k^{2}}{6}=0$
$\frac{\mathrm{d}}{\mathrm{da}}(\mathrm{Var})=0$, all correct, condone missing $\frac{k^{2}}{6}$
$\Rightarrow 2 a-2=0$
$A=1, b=1$.
$\frac{\mathrm{d}^{2}(\mathrm{Var})}{\mathrm{da}^{2}}=\frac{2 k^{2}}{6>0}$ since $k^{2}>0$ therefore it is a minimum
min variance $=(1-2+2) \frac{k^{2}}{6}$
$={ }_{6}^{k^{2}}$
B1 6

Alternative

$$
\frac{k^{2}}{6}(a-1)^{2}-\frac{k^{2}}{6}+\frac{2 k^{2}}{6}
$$

$$
\frac{k^{2}}{6}(a-1)^{2}+\frac{k^{2}}{6}
$$

Min when $\frac{k^{2}}{6}(a-1)^{2}=0$
$a=1 b=1$
$\min \operatorname{var}=k^{2} / 6$

1. This question proved to be the most challenging for many candidates. In part (a) many candidates tried to prove it was equal to $\frac{k}{2}$ and few made the concluding statement that it was unbiased.

In part (b) few candidates were able to find $a+b=2$ and hence made little progress. Those who did find this were able to gain full marks.
In part (c) a mix of both of the given methods on the mark scheme were used. If they chose the first method the majority of candidates did not prove that it was a minimum. If they chose the second they rarely completed the square correctly choosing to leave out the $\frac{k^{2}}{6}$.

